ASSP Communication Control
 IEEE 1394 Bus Controller (for MPEG, DVC)

MB86612

DESCRIPTION

The MB86612 is 1394 serial bus controller exclusively for MPEG and DVC data transfer, compatible with the IEEE 1394 "FireWire" standard (IEEE Standard 1394-1995). Two built-in ports plus a differential transceiver and comparator are provided to enable formation of networks in a 1394 cable environment. The MB86612 supports s100 data transfer speeds.
By integrating the physical layer and link layer on one chip, The MB86612 is designed to reduce mounting area as well as power consumption.
The MB86612 has an exclusive data port for isochronous transfer, provides automatic packetizing and separation of header and data units, and is optimized for continuity of transfer processing.
The MB86612 supports MPEG and DVC AV/C protocols, and includes the necessary built-in automatic operations and CSR's for providing the necessary operations for MPEG and DVC data transfer.

\square FEATURES

- Compatible with IEEE 1394 high-performance serial bus standards
- Physical layer and link layer integrated on one chip
- 2 cable ports
- Supports s100 transfer speed (98.304 Mbit/sec)
-3.3V single power supply operation
- Built-in PLL (for crystal oscillator) for internal clock signal generation
- Power saving modes

1) Forced sleep mode at instruction from MPU
2) Automatic sleep mode for non-connected ports

- Header and data units automatically separated at receiving and automatic packetizing for sending
- Supports cycle master functions
(Continued)

PACKAGES

100-pin plastic LQFP
(FPT-100P-M05)
(BGA-120P-M01)

(Continued)

- Built-in CSR's to provide isochronous resource manager functions
- 32-bit CRC generation and check functions
- General purpose port for asynchronous transfer and control (16-bit MPU bus)
- Exclusive built-in ports for isochronous transfer (8-bit bus)
- Built-in CRS's and automatic processes to support AV/C protocol (MPEG, DVC)

1) Automatic separation of CIP headers at receiving, and automatic packetizing at sending.
2) Automatic generation of source packet headers (time stamp).
3) Source packet header (time stamp) match detection
4) $D B C$ area automatic increment function
5) Empty packet sending and receiving
6) On-chip PCR (input/output 1 channel each)
7) Each CSR with automatic C\&S lock processing and read processing
8) Automatic processing of late packet generation

- Compatible with 4 -core or 6 -core cables
- Packages: LQFP-100, FBGA-120

PIN ASSIGNMENTS

1. LQFP-100

2. FBGA-120

13	12	11	10	9	8	7	6	5	4	3	2	1	
N.C.	AVdd	AVss	VCOIN	TESTP	XO	OCLK	PMODE	A3	A5	Vod	N.C.	$\begin{aligned} & \overline{\mathrm{WR}} \\ & (\overline{\mathrm{DS}}) \end{aligned}$	N
N.C.	RO1	N.C.	CHPO	AVss	X1	VDD	$\overline{\text { CTR }}$	A2	A4	Vss	$\begin{gathered} \overline{\mathrm{RD}} \\ (\mathrm{R} / \mathrm{W}) \end{gathered}$	Vss	M
AV ${ }_{\text {do }}$	AVss	$\begin{aligned} & \text { TP- } \\ & \text { BIAS1 } \end{aligned}$	ROP	AV ${ }_{\text {do }}$	N.C.	Vss	N.C.	A1	N.C.	$\overline{C S}$	N.C.	Vdo	L
AV ss	AV ss	TPB1	TOP VIEW							D0	AD1	AD2	K
$\overline{\text { TPA1 }}$	TPB1	N.C.								AD3	AD4	AD5	
TPA1	AVDD	AVss								D6	N.C.	D7	1
N.C.	ROO	AVss								Vss	VDD	D8	H
AVdo	$\begin{aligned} & \text { TP- } \\ & \text { BIASO } \end{aligned}$	N.C.								N.C.	D9	D10	G
AV ss	AV ${ }_{\text {do }}$	TPB0								D11	D12	N.C.	E
$\overline{\text { TPAO }}$	TPB0	N.C.								D13	D14	D15	D
TPAO	$\mathrm{AV}_{\text {ss }}$	PWR3	ID7	ID4	ID1	Vss	IDIR	IV	LINKON	ALE	Vss	VDD	
AV ${ }_{\text {do }}$	PWR2	Vss	N.C.	ID5	ID2	IDO	ICLK	N.C.	TS	N.C.	INT	N.C.	
PWR1	N.C.	V ${ }_{\text {d }}$	BUSRST	ID6	ID3	N.C.	V DD	ILWRE	$\overline{\text { IERR }}$	MODE0	MODE1	RESET	A
												$\triangle_{1 \text { pin }}$	

PIN LIST

1. LQFP-100

NO.	I/O	Pin Name	NO.	I/O	Pin Name
1	ID	RESET	36	IU	PMODE
2	0	$\overline{\text { INT }}$	37	0	$\overline{\mathrm{CTR}}$
3	-	Vod	38	O	OCLK
4	-	Vss	39	-	VDD
5	ID	ALE	40	-	$\mathrm{V}_{\text {ss }}$
6	ID/O	D15	41	I/O	X0
7	ID/O	D14	42	1	X1
8	ID/O	D13	43	-	TESTP
9	ID/O	D12	44	-	AVss
10	ID/O	D11	45	-	AV ${ }_{\text {do }}$
11	ID/O	D10	46	1	VCOIN
12	ID/O	D9	47	0	CHPO
13	ID/O	D8	48	0	ROP
14	-	V ${ }_{\text {D }}$	49	-	AVss
15	-	Vss	50	-	AV ${ }_{\text {DD }}$
16	ID/O	D7	51	-	N.C.
17	ID/O	D6	52	0	RO1
18	ID/O	AD5	53	-	AV ${ }_{\text {DD }}$
19	ID/O	AD4	54	-	AVss
20	ID/O	AD3	55	0	TPBIAS1
21	ID/O	AD2	56	-	$A V_{\text {DD }}$
22	ID/O	AD1	57	-	AVss
23	ID/O	D0	58	I/O	TPB1
24	-	V ${ }_{\text {D }}$	59	I/O	TPA1
25	-	Vss	60	I/O	TPB1
26	ID	$\overline{\mathrm{WR}}$ ($\overline{\mathrm{DS}})$	61	I/O	TPA1
27	ID	RD (R/W)	62	-	AV ${ }_{\text {do }}$
28	-	V ${ }_{\text {D }}$	63	-	AVss
29	-	Vss	64	0	ROO
30	ID	$\overline{\mathrm{CS}}$	65	-	AVss
31	ID	A5	66	-	AV ${ }_{\text {do }}$
32	ID	A4	67	0	TPBIAS0
33	ID	A3	68	-	AVss
34	ID	A2	69	-	AV ${ }_{\text {DD }}$
35	ID	A1	70	I/O	TPB0

(Continued)
(Continued)

NO.	I/O	Pin Name	NO.	I/O	Pin Name
71	I/O	TPAO	86	ID/O	ID3
72	I/O	TPB0	87	ID/O	ID2
73	I/O	TPA0	88	ID/O	ID1
74	-	AVss	89	ID/O	ID0
75	-	AVDD	90	-	Vss
76	I	PWR1	91	-	Vod
77	I	PWR2	92	ID	ICLK
78	-	VDD	93	ID	IDIR
79	-	Vss	94	\bigcirc	$\overline{\text { ILWRE }}$
80	I	PWR3	95	ID	IV
81	I	BUSRST	96	0	$\overline{\text { IERR }}$
82	ID/O	ID7	97	ID/O	$\overline{\text { TS }}$
83	ID/O	ID6	98	0	LINKON
84	ID/O	ID5	99	ID	MODE0
85	ID/O	ID4	100	ID	MODE1

2. FBGA-120

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Ball } \\ & \text { No. } \end{aligned}$	1/0	Pin Name	$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Ball } \\ & \text { No. } \end{aligned}$	I/O	Pin Name	$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Ball } \\ & \text { No. } \end{aligned}$	I/O	Pin Name
1	A1	ID	$\overline{\text { RESET }}$	37	N4	ID	A5	73	H13	I/O	TPA1
2	B1	-	N.C.	38	M4	ID	A4	74	H12	-	AV ${ }_{\text {do }}$
3	B2	0	$\overline{\text { INT }}$	39	L4	-	N.C.	75	H11	-	AVss
4	C1	-	V ${ }_{\text {d }}$	40	N5	ID	A3	76	G13	-	N.C.
5	C2	-	Vss	41	M5	ID	A2	77	G12	-	RO0
6	C3	ID	ALE	42	L5	ID	A1	78	G11	-	AVss
7	D1	ID/O	D15	43	N6	IU	PMODE	79	F13	-	AV ${ }_{\text {do }}$
8	D2	ID/O	D14	44	M6	0	$\overline{\text { CTR }}$	80	F12	-	TPBIASO
9	D3	ID/O	D13	45	L6	-	N.C.	81	F11	-	N.C.
10	E1	-	N.C.	46	N7	0	OCLK	82	E13	-	AVss
11	E2	ID/O	D12	47	M7	-	V ${ }_{\text {D }}$	83	E12	-	AVDD
12	E3	ID/O	D11	48	L7	-	Vss	84	E11	1/O	$\overline{\text { TPB0 }}$
13	F1	ID/O	D10	49	N8	I/O	X0	85	D13	I/O	$\overline{\text { TPA0 }}$
14	F2	ID/O	D9	50	M8	1	X1	86	D12	I/O	TPB0
15	F3	-	N.C.	51	L8	-	N.C.	87	D11	-	N.C.
16	G1	ID/O	D8	52	N9	0	TESTP	88	C13	I/O	TPAO
17	G2	-	V ${ }_{\text {d }}$	53	M9	-	$\mathrm{AV}_{\text {ss }}$	89	C12	-	AVss
18	G3	-	Vss	54	L9	-	AVDD	90	B13	-	AVDD
19	H1	ID/O	D7	55	N10	1	VCOIN	91	A13	1	PWR1
20	H2	-	N.C.	56	M10	0	CHPO	92	A12	-	N.C.
21	H3	ID/O	D6	57	L10	0	ROP	93	B12	1	PWR2
22	J1	ID/O	AD5	58	N11	-	AVss	94	A11	-	V DD
23	J2	ID/O	AD4	59	M11	-	N.C.	95	B11	-	Vss
24	J3	ID/O	AD3	60	N12	-	AV ${ }_{\text {do }}$	96	C11	I	PWR3
25	K1	ID/O	AD2	61	N13	-	N.C.	97	A10	1	BUSRST
26	K2	ID/O	AD1	62	M13	-	N.C.	98	B10	-	N.C.
27	K3	ID/O	D0	63	M12	0	RO1	99	C10	ID/O	ID7
28	L1	-	VDD	64	L13	-	AVDD	100	A9	ID/O	ID6
29	L2	-	N.C.	65	L12	-	AV sss	101	B9	ID/O	ID5
30	M1	-	Vss	66	L11	0	TPBIAS1	102	C9	ID/O	ID4
31	N1	ID	$\overline{\mathrm{WR}}(\overline{\mathrm{DS}})$	67	K13	-	AV ${ }_{\text {do }}$	103	A8	ID/O	ID3
32	N2	-	N.C.	68	K12	-	AV ss	104	B8	ID/O	ID2
33	M2	ID	$\overline{\mathrm{RD}}$ (R/W)	69	K11	I/O	TPB1	105	C8	ID/O	ID1
34	N3	-	V ${ }_{\text {d }}$	70	J13	I/O	$\overline{\text { TPA1 }}$	106	A7	-	N.C.
35	M3	-	Vss	71	J12	I/O	TPB1	107	B7	ID/O	ID0
36	L3	ID	$\overline{\mathrm{CS}}$	72	J11	-	N.C.	108	C7	-	Vss

MB86612

(Continued)

Pin No.	Ball No.	I/O	Pin Name	Pin No.	Ball No.	I/O	Pin Name	Pin No.	Ball No.	I/O	Pin Name
109	A6	-	VD	113	B5	-	N.C.	117	C 4	O	LINKON
110	B6	ID	ICLK	114	C5	ID	$\overline{\mathrm{V}}$	118	A3	ID	MODE0
111	C6	ID	IDIR	115	A4	O	$\overline{\mathrm{IERR}}$	119	B3	-	N.C.
112	A5	O	$\overline{\text { LLWRE }}$	116	B4	ID/O	$\overline{\mathrm{TS}}$	120	A2	ID	MODE1

PIN DESCRIPTION

1. 1394 Interface

Pin name	I/O	Function
TPA0	I/O	Cable port 0 TPA positive signal I/O pin
TPA0	I/O	Cable port 0 TPA negative signal I/O pin
TPB0	I/O	Cable port 0 TPB positive signal I/O pin
TPB0	I/O	Cable port 0 TPB negative signal I/O pin
TPA1	I/O	Cable port 1 TPA positive signal I/O pin
TPA1	I/O	Cable port 1 TPA negative signal I/O pin
TPB1	I/O	Cable port 1 TPB positive signal I/O pin
TPB1	I/O	Cable port 1 TPB negative signal I/O pin
TPBIAS0	O	Cable port 0 common voltage reference voltage output pin
TPBIAS1	O	Cable port 1 common voltage reference voltage output pin
RO0	O	Connect to GND through 4.7 $\mathrm{k} \Omega$ resistance
RO1	O	Connect to GND through 4.7 $\mathrm{k} \Omega$ resistance

2. Isochronous-data Interface

Pin name	I/O	Function
ICLK	I	Isochronous data interface CLK signal input pin (DC to 16 MHz). Note: When this clock is stopped, transfer is stopped. Also the "Data FIFO init (63h)" instruction (operand: 21) is invalid.
IDIR	I	Isochronous transfer sending/receiving switching signal input pin. 0 input: Clear ISO FIFO, go to sending mode. Sending starts after receiving 1 packet of data. 1 input: Clear ISO FIFO, go to receiving mode. If a '1' signal is entered during packet sending, receiving mode begins after sending of the current packet. The ILWRE signal is asserted after receiving 1 packet. Note: This signal should normally be left at '1', and switched to '0' only when sending.
ILWRE	O	Isochronous FIFE access enable signal output pin. Sending: Asserted when 1 or more empty source packets are present in ISO FIFO. When negated, the data output up to the leading edge for the next ICLX. Receiving: Asserted when receiving of 1 source packet of data is completed. Negate conditions for this signal are determined by the ilwre-mode bit (bit 11) in the mode-control register.
ID7 to IDO	I/O	Isochronous transfer data input/output bits. (MSB is ID7, LSB is ID0)
IV	ID7 to ID0 enable signal input pin. Sending: While this signal is active, data from the ID7 to IDO pins is loaded into ISO FIFO memory at the rising edge of the ICLK signal. Receiving: While this signal is active, data from ISO FIFO memory is sent to the ID7 to ID0 pins. Data is switched at the falling edge of the ICLK signal.	

(Continued)
(Continued)

Pin name	I/O	Function
$\overline{\text { TS }}$	I/O	Sending: DVC mode time stamp trigger signal input pin. (Input) The cycle timer value when this signal is asserted is added to the sending offset value and becomes the sending time stamp. Receiving: Time stamp match detect signal. (output) In MPEG mode, this signal is negative after reading 1 source packet of data. In DVC mode, this signal is asserted for the duration of 32 ticlk (32 periods of the ICLK signal). If an error is detected in a receiving isochronous packet this signal is not output.
IERR	O	This signal is output when an error is detected in a receiving isochronous packet. When an error is detected the TS signal is not output, so that this signal should be used to trigger reading of the receiving packet. If an error such as causing discarding of received packets within a device, this signal is not output.
CTR	O	This signal is output when the cycle timer value is changed. This signal may be output or not output, according to the CTR bit (bit 0) in the mode-control register.
OCLK	O	Cycle timer clock output (24.576 MHz). This signal may be output or not output, according to the CTR bit (bit 0) in the mode-control register.

3. System Interface

Pin name	I/O	Function
$\overline{\mathrm{CS}}$	I	Input pin for signals used by the MPU to select the MB86612 as an I/O device.
A5 to A1	I	Address input pins for internal register selection. Valid only in non-multiplexed mode. If multiplexed mode is selected these pins should be fixed at '0'.
D15 to D6, D0	I/O	16-bit data bus input/output pins (MSB is D15, LSB is D0).
AD5 to AD1	I/O	16-bit data bus input/output pins (MSB is AD5, LSB is AD1). Used for address input signals when multiplexed mode is selected.
$\overline{\mathrm{RD}}(\mathrm{R} / \mathrm{W})$	I	80-series mode: Read strobe signal input pin, used to output data from the MB86612 to the data bus. 68-series mode: Control signal input pin, used for data input/output operations to the MB86612.
$\overline{\mathrm{WR}}(\overline{\mathrm{DS})}$	I	80-series mode: Write strobe signal input pin, used to input data from the data bus to the MB866612. 68-series mode: $\overline{\mathrm{DS}}$ signal input pin, output when data bus is enabled.
ALE	I	ALE signal input pin, for signal output when addresses are enabled in multiplexed mode. In non-multiplexed mode, this signal should be fixed at ' 0 '.
$\overline{\mathrm{INT}}$	O	Interrupt output pin.

4. Other

Pin name	I/0	Function
X0	I/O	
X1	1	External crystal connection pins for oscillator circuits.
VCOIN	I	VCO input pin for internal PLL.
CHPO	O	Charge pump output pin for internal PLL.
ROP	O	Connect to GND through $4.7 \mathrm{k} \Omega$ resistance.
RESET	1	Reset signal input pin. This signal should be set to ' 0 ' when the system power supply is off.
MODE0	1	Input ' 0 ' for 80 -series mode. Input ' 1 ' for 68 -series mode.
MODE1	1	Input '0' for non-multiplexed mode. Input ' 1 ' for multiplexed mode.
PMODE	1	For cable power supply, set to ' 0 ' for power startup. Set to ' 1 ' when cable power supply is off or until system power is on.
PWR1 to PWR3	1	When operating from cable power supply, these pins determine the value of the 'POWER_CLASS' area of Self-ID packets. When operating from system power supply, these pins correspond to the power bit in the Self-ID-PKT-param setting register.
BUSRST	1	When the MB86612 is started from the power supply this bit determines whether a bus reset is applied automatically. Input ' 0 ' for no bus reset. Input '1' for bus reset. When this bit is set to ' 1 ', a bus reset is executed 200μ s after the int-reset bit (bit 9) in the flag \& status register (address $02 h$) is set to ' 1 '.
LINKON	O	Link-on packet receiving detection pin. Outputs an ' H ' signal for 1 to 2 tclk (1 to 2 cycles of the crystal oscillator input signal) when a link-On packet is received. When this signal is not used, leave it open.
AV ${ }_{\text {do }}$	-	Analog power supply
AVss	-	Analog ground
V ${ }_{\text {d }}$	-	Digital power supply
Vss	-	Digital ground
TESTP	-	Test pin. Do not connect.

BLOCK DIAGRAM

BLOCK DESCRIPTIONS

- PHY Layer Control Circuit

This block contains the IEEE 1394 physical layer control circuits.
Both asynchronous transfer and isochronous transfer in a cable environment are supported.
The transfer speed is $98.304 \mathrm{Mbit} / \mathrm{sec}$.
Two analog transceiver/receiver ports are built-in.
This block provides bus status monitoring initialization operation after a bus reset is applied, as well as arbitration and encoding/decoding functions for data sending and receiving.

- LINK Layer Control Circuit

This block controls the generation and transfer of IEEE 1394 standard packets.
32-bit CRC generation and checking is performed for packet headers and data.
A 32-bit cycle timer register is built-in to provide cycle master functions.

- Sending/Receiving FIFO

Contains built-in 4-byte FIFO areas, used for isochronous smoothing and rate conversion for both sending and receiving.
Contains independent sending and receiving 128-byte FIFO areas for asynchronous transfer.

- Packet Processing

Sending: Performs packetizing of headers, data and CRC. Automatically generates and attaches CRC. Receiving: Separates 1394 packet headers and data, strips CRC.

- Special Transaction Circuits

These circuits operate with the packet processing block in handling data from the isochronous interface, packetizing for MPEG and DVC transfer as well as rebuilding receiving data for the isochronous interface.

- Register Block

This block contains various device control registers, as well as registers for setting parameters required for 1394 transfer, AVC protocol registers and CSR.
The built-in CSR provides isochronous resource manager functions.

- PLL Circuit

This block uses the reference clock signal generated by the crystal oscillator circuit to create internal operating clock and transfer clock signals.
Reference oscillator frequency: 8.192 MHz.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Power supply voltage*1	VDD	Vss -0.5	4.0	V
Input voltage*1	V	Vss -0.5	$V_{D D}+0.5$	V
Output voltage*1	Vo	Vss -0.5	$V_{D D}+0.5$	V
Strage temperature	Tst	-55	+125	${ }^{\circ} \mathrm{C}$
Operating temperature*2	Top	-40	+85	${ }^{\circ} \mathrm{C}$
Output current*3	Io	-14	+14	mA
Overshoot*4	-	-	$V_{\text {DD }}+1.0$	V
Undershoot*4	-	-	Vss - 1.0	V

*1: Voltage values are based on Vss $=0 \mathrm{~V}$.
*2: Not warranted for continuous operation.
*3: Normal output current flow (Minimum at $\mathrm{Vo}=0 \mathrm{~V}$, maximum at $\mathrm{Vo}=\mathrm{VDD}$).
*4: 50 ns or less.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value		Unit	
		Min.	Max.			
Power supply voltage*			V ${ }_{\text {D }}$	3.0	3.6	V
"H" level input voltage	CMOS input	V_{1}	$\mathrm{V}_{\text {D }} \times 0.65$	V ${ }_{\text {d }}$	V	
"L" level input voltage	CMOS input	VIL	Vss	VDD $\times 0.25$	V	
Differential input voltage (for data transfer)	Cable input	VID	142	260	mV	
Differential input voltage (for arbitration)	Cable input	VIDA	173	260	mV	
Common mode input voltage	Cable input	V cm	1.165	2.515	V	
Receiving input jitter	Cable input	-	-	1.08	ns	
Receiving input skew	Cable input	-	-	0.8	ns	
Output current	CMOS output	loh/lot	-4	4	mA	
	TPBIAS	lot	-2	10	mA	
Operating temperature		Ta	0	+70	${ }^{\circ} \mathrm{C}$	

*: Voltage values are based on Vss $=0 \mathrm{~V}$.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics
1.1 System Interface, etc

($\mathrm{VDD}=3$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$)								
Parameter		Symbol	Conditions	Value			Unit	
		Min.		Typ.	Max.			
"H" level input voltage			V_{H}	CMOS	$V_{D D} \times 0.65$	-	VDD	V
"L" level input voltage		VIL	CMOS	Vss	-	VDD $\times 0.25$	V	
"H" level output voltage		Vон	$\mathrm{IOH}=-4 \mathrm{~mA}$	VDD - 0.5	-	Vod	V	
"L" level output voltage		VoL	$\mathrm{loL}=-4 \mathrm{~mA}$	Vss	-	0.4	V	
Input leak current	Input pins	IL	$\mathrm{V}_{1}=0 \mathrm{~V}$ to V DD	-5	-	5	$\mu \mathrm{A}$	
	3-state pin input	ILz		-5	-	5	$\mu \mathrm{A}$	
Input pull-up/pull down resistance		Rp	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\text {D }}$	25	50	200	$\mathrm{k} \Omega$	
Power supply current		Idoso	No port connected* ${ }^{\star 1}$	-	-	220	mA	
		Iods1	$\begin{gathered} 1 \text { port } \\ \text { connected } \end{gathered}$	-	-	270	mA	
		Idos2	2 ports connected*1	-	-	300	mA	
		lodss	Forced sleep*1	-	-	50	mA	
		Iddon	Non repeating*2	-	-	220	mA	
		IDDCR	Repeating*2	-	-	240	mA	

*1: Operating from system power supply
*2: Operating from cable power supply

1.21394 Interface Driver

$\left(\mathrm{VDD}=3\right.$ to $3.6 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=0$ to $\left.+70^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Conditions	Value		Unit
			Min.	Max.	
Differential output voltage	Vod	$\mathrm{R}_{1}=56 \Omega$	172	265	mV
Common phase current	Icm	Driver enabled	-0.81	0.44	mA
Off state voltage	Voff	Driver disabled	-	20	mV
TPBIAS output voltage	Vo	-	1.665	2.015	V

1.31394 Interface - Comparator

Parameter	Symbol	Conditions	Value		Unit
			Min.	Max.	
Common phase input current	lic	Driver disabled	-20	20	$\mu \mathrm{A}$
Arbitration comparator "H" level threshold voltage	Vsch	Driver disabled	168	-	mV
Arbitration comparator "Z" level threshold voltage	Vsez	Driver disabled	-30	30	mV
Arbitration comparator "L" level threshold voltage	Vscl	Driver disabled	-	-168	mV
Port status comparator disconnection detect voltage detect voltage	Vso	Driver disabled	0.6	-	V
Port status comparator connection detect voltage	Vsc	Driver disabled	-	1.0	V

2. AC Characteristics

2.1 System Clock

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Clock frequency	fc	-	8.192	-	ns
Clock cycle time	tcLF	-	$1 / \mathrm{fc}$	-	ns
Clock pulse width	tcLCH tcLCL	50	-	-	ns
Clock rise/fall time	tcR tcF	-	-	5	

2.2 System Reset

Parameter	Symbol	Value		Unit
		Min.	Max.	
Reset (RESET) "L" level pulse width	twrsL	4 tclf	-	ns

\square

MB86612

2.3 Driver

Parameter	Symbol	Value		Unit
		Min.	Max.	
Sending jitter	tJT	-	± 0.8	ns
Sending skew	tsk	-	± 0.8	ns
Sending rise time*	tor	-	3.2	ns
Sending fall time*	tbF	-	3.2	ns

*: 10 to 90% value.

2.4 System Interface

(1) 68-Series Register Write Operation (multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	tawsm	10	-	ns
Address hold time	tawнm	5	-	ns
$\overline{\mathrm{CS}}$ setup time	towsm	10	-	ns
$\overline{\mathrm{CS}}$ hold time	tсwнм	5	-	ns
Data setup time	towsm	10	-	ns
Data hold time	towнm	0	-	ns
R/W setup time	trwsm	5	-	ns
R/W hold time	trwнm	5	-	ns
ALE fall to $\overline{\text { DS }}$ fall time	towo	10	-	ns
$\overline{\mathrm{DS}}$ rise to ALE rise time	tıwo	5	-	ns
ALE "H" level pulse width	tale	10	-	ns
$\overline{\text { DS }}$ "L" level pulse width	tosm	20	-	ns

(2) 68-System Register Read Operation (multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	tarsm	10	-	ns
Address hold time	tarhm	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcrsm	10	-	ns
$\overline{\mathrm{CS}}$ hold time	tcrhm	5	-	ns
Data output definition time	trlom	-	15	ns
Data output disabled time	trhdm	0	-	ns
R/W setup time	trwsm	5	-	ns
R/W hold time	trwh	5	-	ns
ALE fall to $\overline{\mathrm{DS}}$ fall time	tord	10	-	ns
$\overline{\mathrm{DS}}$ rise to ALE rise time	tLRD	5	-	ns
ALE "H" level pulse width	tale	10	-	ns
$\overline{\mathrm{DS}}$ "L" level pulse width	tosm	20	-	ns

(3) 68-Series Register Write Operation (non-multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	taws	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcws	5	-	ns
$\overline{\mathrm{CS}}$ hold time	town	5	-	ns
Data setup time	tows	10	-	ns
Data hold time	town	0	-	ns
$\overline{\mathrm{DS}}$ "L" level pulse width	tos	20	-	ns
R/W setup time	trws	5	-	ns
R/W hold time	trwh	5	-	ns
$\overline{\mathrm{DS}}$ rise to address hold time	tawh	5	-	ns

(4) 68-Series Register Read Operation (non-multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	taRS	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcrs	5	-	ns
$\overline{\mathrm{CS}}$ hold time	tcre	5	-	ns
Data output definition time	trLD	-	15	ns
Data output disabled time	trho	0	-	ns
$\overline{\mathrm{DS}}$ "L" level pulse width	tos	20	-	ns
R/W setup time	trws	5	-	ns
R/W hold time	trwh	5	-	ns
Address hold time	tarh	5	-	ns

(5) 80-Series Register Write Operation (multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	tawsm	10	-	ns
Address hold time	tawhm	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcwsm	10	-	ns
$\overline{\mathrm{CS}}$ hold time	tcwhm	5	-	ns
Data setup time	towsm	10	-	ns
Data hold time	towhm	0	-	ns
ALE fall to $\overline{\mathrm{WR}}$ fall time	towd	10	-	ns
$\overline{\mathrm{WR}}$ rise to ALE rise time	tLwd	5	-	ns
ALE "H" level pulse width	tale	10	-	ns
$\overline{\mathrm{WR}}$ "L" level pulse width	twrm	20	-	ns

(6) 80-Series Register Read Operation (multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	tarsm	10	-	ns
Address hold time	tarahm	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcrsm	10	-	ns
$\overline{\mathrm{CS}}$ hold time	tcrim	5	-	ns
Data output definition time	trldm	-	15	ns
Data output disabled time	trhdm	0	-	ns
ALE fall to $\overline{\mathrm{RD}}$ fall time	tord	10	-	ns
$\overline{\mathrm{RD}}$ rise to ALE rise time	tLRD	5	-	ns
ALE "H" level pulse width	tale	10	-	ns
$\overline{\mathrm{RD}}$ "L" level pulse width	trdM	20	-	ns

(7) 80-Series Register Write Operation (non-multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	taws	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcws	5	-	ns
$\overline{\mathrm{CS}}$ hold time	tcwh	5	-	ns
Data setup time	tows	10	-	ns
Data hold time	towh	0	-	ns
$\overline{\text { WR }} \mathrm{L}$ " level pulse width	twr	20	-	ns
Address hold time	tawh	5	-	ns

(8) 80-Series Register Read Operation (non-multiplexed)

Parameter	Symbol	Value		Unit
		Min.	Max.	
Address setup time	tars	5	-	ns
$\overline{\mathrm{CS}}$ setup time	tcrs	5	-	ns
$\overline{\mathrm{CS}}$ hold time	tcri	5	-	ns
Data output definition time	trLD	-	15	ns
Data output disabled time	trhD	0	-	ns
$\overline{\mathrm{RD}}$ "L" level pulse width	trd	20	-	ns
Address hold time	$\mathrm{taRH}^{\text {a }}$	5	-	ns

2.5 Isochronous Interface

2.5.1 ICLK

Parameter	Symbol	Value		Unit
		Min.	Max.	
Clock frequency	-	DC	16	MHz
Clock cycle time	ticlk	62.5	∞	ns
Clock pulse width	ticLu ticll	10	-	ns
Clock rise/fall time	ticr ticF	-	10	ns

2.5.2 Sending Operation

(1) Start Sending Operation

Parameter	Symbol	Value		Unit
		Min.	Max.	
IDIR fall to ILWRE fall	toLl	-	4 ticlk + 10	ns
ICLK rise to ILWRE fall	tchll	-	40	ns
$\overline{\text { LLWRE }}$ fall to $\overline{\mathrm{V}}$ fall	tılvı	1 ticlk + 10	-	ns
$\overline{\mathrm{IV}}$ fall to ICLK rise	tvich	20	-	ns
Data setup time	tios	20	-	ns
Data hold time	tion	0	-	ns
$\overline{\text { TS }}$ input setup time*	tiss	20	1 ticlk - 10	ns
$\overline{\text { TS input hold time* }}$	tTsH	20	1 ticlk - 10	ns

*: Specifications tior and trss are valid in DVC mode only. $\overline{\text { TS }}$ input is not used in MPEG mode.

(2) End Sending Operation

Parameter		Symbol	Value		
			Min.	Max.	
ICLK rise to $\overline{\text { ILWRE }}$ rise	tcHLH	-	40	ns	
$\overline{\text { ILWRE rise to } \overline{\mathrm{V}} \text { rise }}$	tLHvH	1 ticlk +10	-	ns	
ILWR negate time	tLwH	2 ticlk -10	-	ns	

*: The MB86612 operates in 'negate mode', in which the ILWRE signal is negated for each source packet received, as well as 'assert mode', in which the ILWRE signal is continuously asserted as long as ISO sending and receiving FIFO writing are enabled. The above timing chart shows operation in negate mode. If there one or more packets of empty space are present in the sending or receiving FIFO area, the ILWRE signal is again asserted. Note that even in assert mode, if writing to the ISO sending or receiving FIFO areas is disabled, the ILWRE signal is negated according to the timing shown above, and re-asserted when writing is again enabled.
(3) IV Temporary Negation in Sending Operation

Parameter		Symbol	Value		
			Min.	Max.	
ICLK rise to IV rise	tchvH	0	1 ticlk -20	ns	
Date setup time	tıos	20	-	ns	
Data hold time	tıoн	0	-	ns	

2.5.3 Receiving Operation

(1) Start Receiving Operation

Parameter	Symbol	Value		Unit
		Min.	Max.	
ICLK rise to ILWRE fall	tchll	-	40	ns
ILWRE fall to IERR fall ${ }^{* 1}$	tLLEL	-	1 ticlk + 10	ns
$\overline{\text { ILWRE fall to } \overline{\mathrm{V}} \text { fall }}$	tulvL	1 ticlk + 10	-	ns
$\overline{\mathrm{IV}}$ fall to ICLK rise	tvich	20	-	ns
Data output definition time	tvuidv	-	20	ns
Data output disable time	tclidx	0	10	ns
$\overline{\mathrm{TS}}$ output assert time*2	tTSwL	32 ticlk - 10	-	ns

*1: The $\overline{\mathrm{ERR}}$ signal is output when an error is detected in receiving data.
*2: Specification to is valid only in DVC mode. It does not apply to MPEG mode.
*3: The TS signal is output in synchronization with the rise of the ICLK pulse at the time the receiving packet time stamp match is detected.

(2) End Receiving Operation

Parameter	Symbol	Value		Unit
		Min.	Max.	
ICLK rise to ILWRE rise	tchle	-	40	ns
ILWRE rise to IV rise	tLHVH	1 ticlk + 10	-	ns
Final data output disable time	tvelidx	-	20	ns
ILWRE negate time*1	tLwh	2 ticlk - 10	-	ns

*1: The MB86612 operates in 'negate mode', in which the $\overline{\text { LWRE }}$ signal is negated for each source packet received, as well as 'assert mode', in which the ILWRE signal is continuously asserted as long as ISO sending and receiving FIFO writing are enabled. The above timing chart shows operation in negate mode. If there one or more packets of empty space are present in the sending or receiving FIFO area, the ILWRE signal is again asserted.Note that even in assert mode, if writing to the ISO sending or receiving FIFO areas is disabled, the ILWRE signal is negated according to the timing shown above, and re-asserted when writing is again enabled.
*2: The $\overline{T S}$ (in MPEG mode) and IERR signals are negated in synchronization with the ILWRE signal.
(3) $\overline{\mathrm{V}}$ Temporary Negation in Receiving Operation

Parameter	Symbol	Value		Unit
		Min.	Max.	
$\overline{\mathrm{V}}$ rise to ICLK rise	tvнсн	40	-	ns

INTERNAL REGISTERS

The MB86612 internal registers have 3-bank construction, with 16-bit access to all registers.
Bank 0 contains registers necessary for IEEE 1394 settings and transfer, bank 1 contains registers necessary for AV/C (MPEG, DVC) operation, and bank 2 contains CSR's.
In addition each bank has registers used in common for MB86612 device control.

1. Bank Common Registers

The following registers can be accessed in any bank from bank 0 to bank 2.

Address					Write operation	Read operation	
HEX	A5	A4	A3	A2			\leftarrow
00	0	0	0	0	0	mode-control register	flag \& status register
02	0	0	0	0	1	(reserved)	\leftarrow
04	0	0	0	1	0	instruction fetch register	interrupt mask register

MB86612

2. Bank 0 Registers

Bank 0 contains the registers required for 1394 settings and transfers.
Access to this bank is enabled by writing '0000h' to the bank select register (3Eh).

Address						Write operation	Read operation
HEX	A5	A4	A3	A2	A1		
10	0	1	0	0	0	Sending ISO PKT header setting register (high)	Receiving ISO PKT header display register (high)
12	0	1	0	0	1	Sending ISO PKT header setting register (low)	Receiving ISO PKT header display register (low)
14	0	1	0	1	0	Sending ASYNC des ID setting register	(reserved)
16	0	1	0	1	1	Sending ASYNC PKT param setting register	Receiving ASYNC PKT param display register
18	0	1	1	0	0	Sending ASYNC data length setting register	Receiving ASYNC data length display register
1A	0	1	1	0	1	Sending ASYNC ex tcode setting register	Receiving ASYNC ex tcode display register
1C	0	1	1	1	0	Sending ASYNC source ID setting register	Receiving ASYNC source ID display register
1E	0	1	1	1	1	Sending ASYNC resp param setting register	Receiving ASYNC resp param display register
20	1	0	0	0	0	Sending ASYNC des offset setting register (high)	Receiving ASYNC des offset display register (high)
22	1	0	0	0	1	Sending ASYNC des offset setting register (middle)	Receiving ASYNC des offset display register (middle)
24	1	0	0	1	0	Sending ASYNC des offset setting register (low)	Receiving ASYNC des offset display register (low)
26	1	0	0	1	1	(reserved)	\leftarrow
28	1	0	1	0	0	(reserved)	PHY ID display register
2A	1	0	1	0	1	(reserved)	NODE config display register
2C	1	0	1	1	0	(reserved)	PORT config display register (port0)
2E	1	0	1	1	1	(reserved)	PORT config display register (port1)
30	1	1	0	0	0	state clear setting register	root ID display register
32	1	1	0	0	1	Self ID PKT param setting register	ISO resource manager ID display register
34	1	1	0	1	0	(reserved)	\leftarrow
36	1	1	0	1	1	(reserved)	\leftarrow
38	1	1	1	0	0	(reserved)	cycle timer monitor display register (high)
3A	1	1	1	0	1	(reserved)	cycle timer monitor display register (low)
3C	1	1	1	1	0	(reserved)	\leftarrow

3. Bank 1 Registers

Bank 1 contains the registers required for AV/C (MPEG, DVC) protocols.
Access to this bank is enabled by writing ' 0001 h ' to the bank select register (3Eh).

Address						Write operation	Read operation
HEX	A5	A4	A3	A2	A1		
10	0	1	0	0	0	Sending time stamp offset setting register	Receiving time stamp display register (high)
12	0	1	0	0	1	Sending time stamp offset setting register	Receiving time stamp display register (low)
14	0	1	0	1	0	Sending CIP header setting register (highest)	Receiving CIP header display register (highest)
16	0	1	0	1	1	Sending CIP header setting register (high)	Receiving CIP header display register (high)
18	0	1	1	0	0	Sending CIP header setting register (low)	Receiving CIP header display register (low)
1A	0	1	1	0	1	Sending CIP header setting register (lowest)	Receiving CIP header display register (lowest)
1C	0	1	1	1	0	OMPR (high)	\leftarrow
1E	0	1	1	1	1	OMPR (low)	\leftarrow
20	1	0	0	0	0	OPCR0 (high)	\leftarrow
22	1	0	0	0	1	OPCR0 (low)	\leftarrow
24	1	0	0	1	0	(reserved)	\leftarrow
26	1	0	0	1	1	(reserved)	\leftarrow
28	1	0	1	0	0	(reserved)	\leftarrow
2A	1	0	1	0	1	(reserved)	\leftarrow
2 C	1	0	1	1	0	IMPR (high)	\leftarrow
2E	1	0	1	1	1	IMPR (low)	\leftarrow
30	1	1	0	0	0	IPCR0 (high)	\leftarrow
32	1	1	0	0	1	IPCR0 (low)	\leftarrow
34	1	1	0	1	0	(reserved)	\leftarrow
36	1	1	0	1	1	(reserved)	\leftarrow
38	1	1	1	0	0	(reserved)	\leftarrow
3A	1	1	1	0	1	(reserved)	\leftarrow
3C	1	1	1	1	0	AV mode setting register	AV status register

4. Bank 2 Registers

Bank 2 contains CSR's.

Access to this bank is enabled by writing '0002h' to the bank select register (3Eh).

Address					Write operation	Read operation	
HEX	A5	A4	A3	A2			\leftarrow
10	0	1	0	0	0	bus manager ID register (high)	\leftarrow
12	0	1	0	0	1	bus manager ID register (low)	\leftarrow
14	0	1	0	1	0	bandwidth available register (high)	\leftarrow
16	0	1	0	1	1	bandwidth available register (low)	\leftarrow
18	0	1	1	0	0	channels available high register (high)	\leftarrow
1A	0	1	1	0	1	channels available high register (low)	\leftarrow
1C	0	1	1	1	0	channels available low register (high)	\leftarrow
1E	0	1	1	1	1	channels available low register (low)	\leftarrow
20	1	0	0	0	0	(reserved)	\leftarrow
22	1	0	0	0	1	(reserved)	\leftarrow
24	1	0	0	1	0	(reserved)	\leftarrow
26	1	0	0	1	1	(reserved)	\leftarrow
28	1	0	1	0	0	(reserved)	\leftarrow
$2 A$	1	0	1	0	1	(reserved)	\leftarrow
$2 C$	1	0	1	1	0	(reserved)	\leftarrow
$2 E$	1	0	1	1	1	(reserved)	\leftarrow
30	1	1	0	0	0	(reserved)	\leftarrow
32	1	1	0	0	1	(reserved)	\leftarrow
34	1	1	0	1	0	(reserved)	\leftarrow
36	1	1	0	1	1	(reserved)	\leftarrow
38	1	1	1	0	0	(reserved)	\leftarrow
$3 A$	1	1	1	0	1	(reserved)	\leftarrow
$3 C$	1	1	1	1	0	(reserved)	

MB86612

■ ORDERING INFORMATION

Partnumber	Package	Remarks
MB86612PFV	100-pin plastic LQFP (FPT-100P-M05)	
MB86612PBT	120-pin plastic FBGA (BGA-120P-M01)	

PACKAGE DIMENSIONS

100-pin plastic LQFP
 (FPT-100P-M05)

(c) 1995 FUJITSU LIMITED F100007S-2C-3

Dimensions in mm (inches)

120-pin plastic FBGA
(BGA-120P-M01)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

